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Abstract. Much attention has been paid to the d = 3, s = f Ising model on the BCC lattice 
in recent years because the best high-temperature series expansions were available for 
this lattice. However, in order to compare series estimates of critical exponents and 
temperatures with independent evaluations via the Monte Carlo method, lattices of lower 
coordination number must be considered, since Monte Carlo studies are usually made on 
these. In this paper a study of extant susceptibility series on the FCC, SC, diamond and 
tetrahedron lattices is reported on and some comments are made on aspects of recent 
Monte Carlo analyses of the d = 3, s = f Ising model on the sc and diamond lattices. 

1. Introduction 

There has been renewed interest in the literature concerning the technique of exact 
series expansions in critical phenomena during the last few years, because following 
the pioneering work of Nickel (1981), it has become clear that any apparent disagree- 
ment between series and renormalisation group (RG) estimates of critical exponents 
(or disagreement over the validity of hyperscaling) is removed when the hypothesis 
of non-analytic confluent corrections to dominant exponents is invoked in the analysis 
of series expansions. This hypothesis (which is an integral part of RG theory (Wegner 
1972)) replaces the assumed critical behaviour of, for example, the susceptibility x, 

~ - ( u - v V , ) - Y [ l + b l ( u - u , ~ + .  .I 

x - ( U  - U . ) - Y [ l + a l ( u - v . ~ A ' + b l ~ u - u t r . ~ + .  . .I 
by 

where v = tanh K is the high-temperature series expansion variable, bl is the amplitude 
of the first analytic correction term, and a l  is the amplitude of the first confluent 
non-analytic correction term. Analyses which invoke and justify this hypothesis to 
remove hyperscaling violations for the d = 3, s = 4 Ising model on the BCC lattice 
include Chen et a1 (1982), Zinn-Justin (1981), Roskies (1981b) and Adler et a1 
(1982b). Similar studies have been made for the FCC lattice, (McKenzie 1979), but 
most recent studies of the s = $ model on the sc diamond and tetrahedron lattices 
predate Nickel (1981) and imply a l  = 0 in the susceptibility series for s =; (Gaunt 
and Sykes 1979, Oitmaa and Ho-Ting-Hun 1979, Gaunt 1982). Two exceptions are 
the calculations of Zinn-Justin (1979) and Roskies (1981a). Zinn-Justin (1979) 
obtained partial agreement with hyperscaling (see table 2), but Roskies (1981a), who 
studied a short second moment series on the sc lattice using field theoretic methods 
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and accepted the possibility that a l  # 0, still found hyperscaling violation, and we shall 
discuss this below. 

In the case where a l  = 0 (see table 1) (McKenzie 1975, Sykes et a1 1972, Gaunt 
and Sykes 1973, 1979, Ho-Ting-Hun and Oitmaa 1975), analysis of the susceptibility 
seriesleads to ~ ~ v a l u e s o f  0.10173*0.00001 (FcC), 0.21813*0.00001 (sc), 0.15612* 
0.00003 (BCC), 0.35381 f 0.00003(diamond) and 0.23300 f 0.00001 (tetrahedron). 
We denote the central u c  values for the case a l  = 0 as v c ( 0 ) ,  and note (see 0 2) that 
invocation of the hyopthesis that a l  # 0 led to downward revision of uc(0) for the BCC 
and FCC lattices. A slight downward trend was also observed by Zinn-Justin (1979) 
(see table 2) for the sc and diamond lattices. We examine uc in the case that a l  f 0 
for all these lattices in 9: 3 below. 

Table 1. Series estimates of uF and y for 3D lattices ( a ,  = 0). 

Lattice BCC FCC sc Diamond Tetrahedron 

Susceptibility Sykes et a1 
series (1972) 
derivation"' 
No of terms 15 
Analysis'*' Sykes et a1 

(1972) 

0.156 12* 
0.000 03 
1.25*0.003 

McKenzie 
(1975) 

15 
McKenzie 
(1975) 

0.101 73* 
0.000 01 
1.246*0.005 

Gaunt and 
Sykes (1979) 

19 
Gaunt and 
Sykes (1979) 

0.218 13* 
0.000 01 
1.25+0.003 

Gaunt and 
Sykes (1973) 

22 
Gaunt and 
Sykes (1973) 

0.353 81 * 
0.000 03 
1.25 * 0.003 

Ho-Ting-Hun 
and Oitmaa 
(1 975) 
16 
Oitmaa and 
Ho-Ting-Hun 
(1979) 
0.233 OO* 
0.000 01 
1.250*0.001 

'"We quote the authors of the most recent terms only. 
(*I  We quote Y = 0.638 T::::: from Gaunt (1982). 

It is perhaps prudent to enquire at the outset why one would be concerned with 
further series studies on other lattices (and in particular with loose packed lattices) 
when arguments of universality predict that critical exponents will take the same 
values on all lattices. This is a valid consideration, however, since critical temperatures 
are not lattice independent and since it has been common practice in Monte Carlo 
(MC) calculations to use series estimates of uc as a starting point (e.g. Knak Jensen 
and Mouritsen 1982) or point of reference (e.g. Blote and Swendsen 1980), it appears 
desirable that reliable series estimates of uc be available for loose packed lattices. 
The series estimates were used in the MC studies because they were supposedly more 
accurate; we shall demonstrate below that this accuracy is spurious and that the uc 
obtained in a series analysis is a function of whether the confluent singularity hypothesis 
is invoked or not. 

In § 2 we shall discuss previous work on the BCC lattice and present evidence for 
the dependence of uc on the acceptance/rejection of the confluent hypothesis. We 
shall indicate the dependence observed on the BCC lattice and also discuss the FCC 

study of McKenzie (1979) and the sc calculation of Gaunt (1982). Section 3 will 
include a presentation of new results of the FCC, sc, diamond and tetrahedron lattices 
and a discussion of general trends. In 9 4  comments will be made on the above 
mentioned Monte Carlo calculations and a discussion of the implications of the present 
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work will be made in 5 5. Comprehensive tables of U ,  and exponent values obtained 
by various authors are also presented. 

2. Previous studies on the BCC, FCC and sc lattices 

All the above cited analyses of Nickel’s 21-term susceptibility series lead to similar 
conclusions, videlicit y - 1.238 and A I  - 0.5 in agreement with RG predictions and 
consistent with hyperscaling. These analyses use many different types of techniques 
including ratio (Zinn-Justin 198 l),  partial differential PadC approximants (Chen et a1 
1982), and Pad6 Roskies transformation (Roskies 1981b, Nickel and Dixon 1981, 
Adler et a1 1982b). The virtues and deficiencies of these methods have been discussed 
elsewhere (Adler et a1 1983, Guttmann 1983) and we only note that the strong 
agreement between the different methods is most pleasing. 

Let us re-examine the analyses. Two of them (Chen et a1 1982 and Nickel and 
Dixon 1981) do not consider the s = Ising model directly but work on models that 
interpolate between the s = $ Ising model and the Gaussian model. They concentrate 
on a particular choice of model parameters for which a l  = 0 and estimate y at this 
point. These y values ( y  = 1.2385 10.0015 and y = 1.23 f 0.003 respectively) are 
then transferred to the Ising limit. The Chen et a1 (1982) calculation is independent 
of U, choice, whereas in the Nickel-Dixon (1981) study the exponent y is a function 
of U ,  (the above estimate corresponds to U, - 0.156 086 whereas y = 1.240 corresponds 
to U, - 0.156 090). The ratio study of Zinn-Justin (1981) also gives exponent estimates 
that are independent of U, choice, but he notes that in a biased study a relative 
variation of at the 20th ratio estimate. 
This independent ratio study is made possible by the existence of two long series 
(susceptibility and correlation length) for the BCC lattice. 

We note that the dependence of y on the choice of U, is not peculiar to the above 
calculations. It was observed earlier (Baker and Hunter 1973) for shorter king model 
and test series, and in fact many exponent results are quoted in terms of uncertainties 
in critical temperatures (e.g. Essam 1980). 

We now consider the question of temperature dependence of y on U, in detail. 
The Nickel-Dixon (1981) study is a PadC analysis which uses the Roskies (1981b) 
transformation to a new variable y = 1 - (u/u,- 1)1’2 to eliminate the effect of a 
non-analytic term with exponent A I  = exactly. Roskies (1981b) developed this 
transformation and applied it to the s = 1 BCC series where the temperature dependence 
of y on U, also appears. Adler et a f  (1982a, b) have generalised the transformation 
to y = 1 - (u/u,- l)* and find that estimates of y, U, and A I  are all interrelated. We 
found that the best convergence (see § 3 below) is given for 0.156 086 s U,S 0.156 090, 
y = 1.238 * 0.003 and Al = 0.49* 0.08. 

Zinn-Justin (1981) previously noted that y estimates depend on AI input values 
and the general trend observed in all these studies is that y and A I  decrease as uc 
decreases. In particular the ‘old’ (Sykes et a1 1972, Gaunt and Sykes 1979) estimates 
of y-1.250*0.003, and U,-0.156 12*0.00003, are replaced by y-1.24 andu,- 
0.156 09, the U, estimate just touching the old value and the y estimate outside the 
old range. The variation in A, is very slow and estimates of A1 are all quite wide. 

We now consider the FCC lattice. McKenzie (1979) found that y = 1.241 and 
A1 = 0.496 correspond to K ,  = 0.102 07, whereas y = 1.25 and Al = f correspond to 
K ,  = 0.102 08 and y = 1.25 and a1 = 0 (no confluent singularity) yield K ,  = 0.102 09. 

in tanh-’ U, leads to an error of 1.2 x 
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Again there is a decrease in A I  and y as U ,  decreases, small changes in K ,  are irrelevant 
and the best convergence is found for K,= 0.10207 (U,-0.101 72), outside the old 
range. 

A ratio analysis similar to the above has been carried out for the sc lattice by 
Gaunt (1982). Assumingy = 1.241 and A I  =0.496 hefoundK,=0.221 66*0.00001, 
although no clear preference for these values over the old ones was expressed. The 
difference between the BCC and FCC studies noted above and this latter work is that 
in the former works clear indications of better convergence near the RG estimates 
were found. A summary of the results presented in this section can be found in table 
2. In 9: 3, we aim to obtain equally clear indications for the sc diamond and tetrahedron 
lattices. 

3. New results 

We present below new results for the FCC, SC, diamond and tetrahedron lattices 
obtained using the methods of Adler et a1 (1982a, b). The FCC lattice is close packed 
(coordination number 12) and is generally considered to be the best lattice for series 
analyses, In the case of the d = 3, s = $ Ising model however, the series (15 terms) is 
much shorter than that for the BCC lattice so that the BCC has been more thoroughly 
investigated. The se, diamond and tetrahedron lattices are all loose packed (with 
coordination numbers of 6, 4 and 6 respectively) and are thus well suited for Monte 
Carlo calculations. The susceptibility series (from Gaunt and Sykes 1979, 1973, 
Ho-Ting-Hun and Oitmaa 1975) are 19, 22 and 16 terms long respectively, and 
although the diamond lattice series is not particularly well behaved, the others are 
quite suitable for PadC analysis. We note that of all the methods successfully applied 
to the s = i, BCC lattice only Roskies’ (1981b) and our generalisation of it, can be 
applied to these four lattices, since no long pair-correlation and no extensive series 
interpolating to the Gaussian model are available in the literature to the best of the 
author’s knowledge. We mention that the method utilised by Bessis et a1 (1980) and 
Moussa (1982) which is a modification of the Baker-Hunter transform is applicable; 
however, since no stability for the subdominant indices was found for the s = 5 ,  BCC 
lattice we do not consider this technique further here. 

We caution that in view of the evidence accrued from other methods of analysis 
the reliability of the Baker-Hunter transform for spin-$ Ising susceptibility series 
appears questionable; perhaps this method needs to be applied to a wider range of 
U ,  values to obtain results that are consistent with those of other methods. 

From the preceding discussion we can expect that if the confluent singularity 
hypothesis is invoked the y value will move downwards, and the U, value may well 
change. We follow the procedure of Adler et a1 (1982a, b) and transform the ,y series 
to one in y = 1 - ( u / u , -  1)’ and analyse 

GA(Y 1 = A(Y - l)(d/dy ) ( l ~ ( y  1) + -Youtput(A) 

for various input A and u C  values. For each A and U, choice several highest- and 
nearest-diagonal PadC approximants to -youtput (A) are obtained and we plot surfaces 
in the three-dimensional (A,  y,  U,) space by looking at (A, y )  planes for certain choices 
of U ,  (see figure 1). Since an analytic b l  term is always present, the plane A = 1 
corresponds to a1 = 0 or no confluent singularity with AI < 1 and the y value for this 
plane at uJO) corresponds to the result of ordinary Pad6 analysis (Adler et a1 1982a, 
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Figure 1. The (A ,  y, U,) space in which we search for a point of optimal convergence of 
surfaces traversed by different biased Pad6 approximants to the function A(y - l ) (d /dy)  x 
[In ,yiy 11, where y = 1 - iu/u, - l )A .  

1983) at uc(0) .  However, the presence of a confluent singularity with a l  # 0 and A I  < 1 
introduces systematic errors into this y evaluation since Ga(y ) + yOUtPut (A) is non- 
analytic; these errors are similar for different lattices. When one invokes the confluent 
singularity hypothesis and expects a singularity with a l  f 0 and some A1 < 1, one may 
search in the region near this A I ,  and since Ga(y) + ydutput will now be a linear function 
proportional to lA-Al l  near this A I ,  there will now be a point (Al ,  y )  where all these 
surfaces intersect. Higher-order confluent terms will smear this point into a ‘conver- 
gence region’. For the BCC lattice this region coincides with estimates of A I  and y 
from other series studies as well as with renormalisation group estimates (Baker et a1 
1976, 1978, Le Guillou and Zinn-Justin 1980) and experiment (Sengers 1982). It is 
of interest to see whether a similar picture emerges for other lattices. 

Since our method of searching involves examining successive (A, y ) planes, the 
convergence region within the plane leads quite naturally to error bounds for A I  and 
y estimates. The question of error bounds on v c  is more complex, and we quote 
below ranges of uc values for which stable convergence is obtained. An extra *O.OOO 03 
at either extremum should be understood as a possible inherent systematic error on 
the method. 

We consider firstly the sc lattice. In figure 2(a) we present the (A,  y )  plane at 
uc(0), and in figure 2(b) we present this plane for uc=0.218 100, just at the bottom 
limit of the old uc range. We feel that this uc value is at the upper end of acceptable 
choices and in figure 2(c) we illustrate the same plane for u c =  0.218 097. Below 
uc-  0.21809 the structure disappears. Boxes corresponding to our (Adler et a1 1982b) 
BCC estimates and those of Chen et a1 (1982) are superimposed on the figures, the 
results being in close agreement in 2(b) and 2(c). We retain the BCC y and A I  estimates 
(although perhaps y is a little higher here) and propose 0.218 09 s uc G 0.218 10 for 
the sc lattice. This corresponds to 0.221 65 << Kc<< 0.221 66. This compares favour- 
ably with one of the values ( K ,  = 0.221 66* 0.000 01) obtained by Gaunt (1982). In 
our case however, clear evidence of convergence to a value below the old range is 
apparent. 
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A 

Figure 2. Planes in the (A,  y, U,) space for the sc 
lattice for ( a )  v J 0 )  = 0.218 130, ( b )  U,= 0.218 100, 
(c )  U, = 0.218 097. The box with sides -- indi- 
cates the values from Adler et a1 (1982b) and the 
box with sides --- indicates those of Chen et a1 
(1982). 

The situation with the tetrahedron lattice is somewhat different. This is a rather 
interesting lattice since although it has a low coordination number, the series seem 
to be very regular (Oitmaa and Ho-Ting-Hun 1979). The lattice is made up of either 
the magnetic (B) ions in the spinel AB2X4 structure or the B sublattice of crystobalite 
AB2. The susceptibility series was obtained (Ho-Ting-Hun and Oitmaa 1975) via a 
generalisation of Gibberd’s (1970) transformation of a diamond lattice free energy 
series to the tetrahedron lattice. In figure 3(a) we present the (&, y )  plane at u,(O) 
and note the strong similarity to 2(a). In 3(b) this plane is shown for U, = 0.232 99, 
the bottom of the old limit; we observe that there is no approach to the boxed area. 
In 3(c) ( u C =  0.232 94), there is overlap with the boxes, similar behaviour being 
observed for uC = 0.232 94*0.000 01. By U, = 0.232 93 there is no longer any overlap 
with the boxed region although some structure persists with an apparent - 0.7. 
This lattice seems to present a higher A 1  estimate than the Adler et a f  (1982) BCC 
calculation and we conclude 0.232 90 s U ~ S  0.232 99. It is not possible to place too 
much emphasis on the A l  estimate since the series is relatively short. 

We now consider the diamond lattice. The lattice is known to be problematic for 
many methods of analysis, and in applications of this method to percolation (Adler 



h A 

h 

Figure 3. Planes in the (A,  y, U,) space for the 
tetrahedron lattice for ( a )  u,(O) = 0.233 00, ( b )  U, = 
0.232 99, ( c )  U, = 0.232 94. The box with sides - - 
indicates the values from Adler et a1 (1982b) and 
the box with sides - - - indicates those of Chen et 
a1 (1982). 

et a1 1982a, 1983) the analogous two-dimensional lattice (honeycomb) was problem- 
atic, Here again intersection regions are minimal; however, we can study u c .  Again 
(figure 4(a)) the v c ( 0 )  plane exhibits the now familiar flat behaviour of y as a function 
of A I  and the erroneous y - 1.25. For u c  - 0.353 76 there is movement into the boxed 
region (4(b)); below u c -  0.353 74 this disappears. We estimate 0.353 74 S v c S  
0.353 79. 

Finally we come to the FCC lattice. Here at a first glance the uc(0)  plane (figure 
5 ( b ) )  appears similar to the BCC and sc cases. However, unlike the three lattices 
studied above, the value of y for A>0.7 is well below 1.25. In fact in the original 
analysis of the 15-term series (McKenzie 1975) a value of y = 1.246 was quoted 
although this was claimed to converge to the then expected value of y = 1.25. For 
U, = 0.101 72 (figure 5(c)) the results are very similar to the BCC results at U, = 0.156 09; 
the intersection regions exactly overlap. The structure disappears before uc = 0.101 71 
and thus the lower half of the u,(O) estimate seems to be quite accurate. 

As noted above McKenzie (1979) suggests that for the FCC lattice the exponent 
y - 1.241, A I  - 0.496 imply a u c  of -0.101 72, in general agreement with the above. 

We can conclude that for both the sc and FCC lattices the ratio studies indicate 
values of U, near the bottom of the old Pad6 ranges (using y - 1.241 as input), whereas 
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Figure 4. Planes in the (A, y, U,) space for the diamond lattice for (a )  uJO) = 0.353 80, 
( b )  U, = 0.353 76. The box with sides - - indicates the values from Adler er al (1982b) 
and the box with sides - - - indicates those of Chen et a1 (1982). 
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Figure 5. Planes in the (A, y, U,) space for the FCC 
lattice for (a)  0,=0.101 75 ,  ( b )  ~ ~ ( 0 )  = 0.101 73 ,  (c) 
v,=0.101 72. 
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we find values centring below the old range and y - 1.238 in agreement with Chen 
et a1 (1972). 

We have also considered the region above the old estimates. Near the top of the 
v,(O)(-0.10175) estimate we observe some very interesting (figure 5 ( a ) )  effects, 
notably a very loose intersection region near y - 1.243 and A-0.65. Thus if one 
were to consider at which points in the (A, y,  0,) space consistent estimates of y - 1.243 
and 0.4<A<0.7 appeared one could not a priori exclude this uc value. However, 
the looseness of the intersection region indicates that such a choice is unlikely. 

To investigate further this second ‘convergence’ at v c  values greater than v,(O) we 
have carried out some further studies on the BCC lattice. In the region near the top 
of the v,(O) estimate U,-0.156 12 (figure 6(a ) )  we see this loose convergence and in 
figure 6(6) we show behaviour that is intermediate between this and the behaviour 
of the type shown in figures 2(a) ,  3 ( a )  and 5(b) .  While we think (and this is the case 
in d = 2 percolation (Adler et al 1982a) where p c  is known exactly)) that the true 
convergence is exhibited below u,(O), we cannot exclude this region near the top of 
the v c ( 0 )  error range on either the FCC or BCC lattices. We can, however, exclude 
values way above the v , ( O )  + 0.000 03 estimates for both lattices. 

T 

a 

1.252 

1.236 

I , I 
0.40 0.60 0.80 

A 

1.252 

1.244 

T 

1.236 

a 

Figure 6. Planes in the (A,  y, U,) space for the BCC 
lattice for ( a )  u,=O.156 12, ( b )  u,=O.156 10, ( c )  
u,=0.15609. 
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There is some independent evidence for our conclusions from Monte Carlo renor- 
malisation group (MCRG) work (Friedman and Felsteiner 1977) on the sc lattice. This 
calculation is a real space RG method and can be expected to give good K, values. 
By looking at K, as a function of increasing cell size (where the cell side is of length 
L ) ,  convergence to the exact limit for the d = 2, s = $ Ising model on the square lattice 
was observed. However, the value of K, that corresponds to u,(O) is obtained for the 
sc lattice already at cell size 9 x 9 x 9 and thus extrapolation to L = 00 should give 
K,<0.2217, since in both cases K, decreases as L increases. This is in agreement 
with our conclusion and was in fact a partial motivation for the investigation discussed 
herein. There is another MCRG study (Blote and Swendsen 1980) that confirms the 
series estimate to within 1%. This is consistent with the above. 

It does of course seem desirable to study the dependence of u c  and a l  on each 
other via series methods for quantities other than the susceptibility x. This has been 
done for the M 2 / x  series on the BCC lattice (Adler et a1 1982b, Nickel and Dixon 
1981) and similar behaviour is found. We note that a second (15-term) M 2 / x  series 
is available for the sc lattice. This series (Roskies 1981a) gives similar values to the 
BCC ones of Adler et a1 (1982b) and Nickel and Dixon (1981), uidelicet 0.628 < Y < 
0.633 and 0.38 < A l  < 0.56, and convergence is most clearly apparent near U,- 
0.218 097 in agreement with the susceptibility results above. Near u,(O),  Y - 0.64 
which is in agreement with the old series estimates. We illustrate the (2v, A )  plane 
at U, = 0.218 097 in figure 7. These results for the M Z / x  series are an improvement 
on those of Roskies (1981a) who found v = 0.6423 *0.0008 as compared with the 
RG value v - 0.630 and confirm the dependence of the observation or otherwise of 
a confluent term with amplitude not equal to zero on the critical temperature. 

i 1.288 

h 

Figure 7. A plane in the (A, 2v, U,) space for U, = 0.218 097 (SC lattice). 

At this point of time all the indications seem to point to a downward revision of 
u,(O) estimates for the BCC, FCC, sc, diamond and tetrahedron lattices. These new 
estimates are presented in table 2. It is clear that the old u c ( 0 )  values no longer 
constitute an unquestionable standard for comparison with the results of other 
methods. It is also clear that very small changes in u,(O)  lead to very rapid changes 
in y estimates and thus the question is a delicate one. Two possibilities present 
themselves for validating the downward temperature revisions, one being a large MC 
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study that does not assume an old v, (O)  value and the other an extension of the Bessis 
et af (1980) calculation, using the Baker-Hunter method, to ti, values outside the old 
range. Preliminary results from the Santa Barbara Monte Carlo processor (Toussaint 
and Pearson 1983) indicate v,=O.218 11 *O.OOO 02 in pleasing agreement with this 
work. 

4. Comments on some recent Monte Carlo studies 

We now consider the implications of the results of 0 3. In most cases the v c  estimates 
barely overlap the old v,(O) values. The old values correspond to an absence of a 
confluent correction term with Al  < 1 and thus their use in MC studies means that one 
may well be excluding, a priori, any possibility of observing confluent singularities. 
We note that it is quite feasible to observe corrections to scaling via MC (Chakraborti 
et a1 1981, Havlin and Ben Avraham 1982). 

The first study that we wish to comment on is the heat capacity analysis of Knak 
Jensen and Mouritsen (1982). Actually, they consider the energy which we may write 
as 

E - E, + E, ( r  - t,) + E+( t - tc) l -a ( 1 + a ; ( t  - tJA1 + b ; ( t  - t , )  

+a: ( t  - tc )2A '+Ct( t  - t c ) A 2 + .  * .) for t > t ,  

and similarly ( t  +tc,  t,++, a + + a - )  for t C t , .  They set b1 and c1 = O  but make full 
acknowledgement of the existent of a confluent singularity, allowing either (i) a l  or 
(ii) a 2  to be non-zero. In the former case, they do not find agreement with &-expansion 
dominant singularity ratios for their choice of t,. For the latter case (al  = 0) they 
claim agreement at their t , ;  however, the exponent of the a2 term (2Al) is equal to 
0.986 and thus could easily be confused with the analytic (bl)  term in a MC study. 
They ignore the possibility of a second confluent term with A2 - 0.9 (Rehr 1979 and 
references therein) which is distinct from 2A1; we have looked for this term in the 
BCC series and find some evidence for a term with AZ-0.78. The justification given 
for setting a l  = 0 is the results of Camp et a1 (1976); however, as discussed in the 
introduction, this study is now outdated. At first sight agreement between their a l  = 0 
results and the expansion amplitude ratios seems surprising. However, in view of the 
fact that incorrect effective critical exponents obey scaling relations (Aharony and 
Ahlers 1980) and that amplitude variations may be small, such agreement may well 
occur. 

We suggest that the reason for their contradictory results is their choice of t,. They 
consider the estimates of Sykes et a1 (1972) for the sc and Gaunt and Sykes (1973) 
for the diamond, which we have quoted in § 3 above. We have shown the (r, A) plane 
at the centre of these estimates in figures 2(a)  and 4(a) respectively and noted that 
at u,(O) corresponding to their t,, it does indeed seem that a l  = 0 and b1 # 0; the 
distinction between an analytic ( b l )  term and a confluent (az)  term with exponent 
2 A l  - 0.986 is very fine, and at any rate we study susceptibility series and they look 
at energy series and thus relative amplitudes may vary. However, it does seem quite 
possible that they are merely observing an analytic term and that their results do not 
correspond to any non-analytic correction term. Thus their results are quite consistent 
with ours at v,(O) (It is of course also possible that at v J 0 )  the second confluent 
singularity at 2A1 dominates the singularity at A I  and we have seen this rather than 
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the analytic term but this seems unlikely.) We propose that their results reduce to 
a l  = 0 and b l  # 0 at u,(O) ,  and the reason they do not find consistent results for a l  # 0 
is because they are considering an incorrect f c  for the model. Further, by choosing 
the old f, estimates with their spurious apparent accuracy Knak Jensen and Mouritsen 
exclude a priori any possibility of observing the correct confluent structure. 

An interesting question is what effect a change in f, would have on their results. 
They state that the uncertainty of t ,  is not important in the interval covered by the 
data; however, they do not seem to consider what happens beyond the old U, estimates. 
We think that v c  is outside the old limits for both the sc and diamond lattices, and 
thus it would be of interest to see what results they would find if they considered f, 
values in the ranges suggested by our 9: 3.  In this range a l  # 0 from our study, and it 
would be interesting to see if this would be confirmed by MC results. 

The second MC study that we shall consider is the renormalised coupling constant 
study of Freedman and Baker (1982). These authors claim that a small violation bf 
hyperscaling is observed, and in their MC analysis they mention the old high- 
temperature series critical temperature on the sc lattice, but do not indicate what 
effect a change in U, would have on their conclusions. They compare their MC results 
with series estimates (Baker and Kincaid 1981) that are made under the assumption 
that no confluence is present near the Ising limit of the continuous spin mode. (This 
assumption was verified by application of the Baker-Hunter transformation, which 
as above is apparently problematical for the BCC spin-: Ising model; for this lattice 
there is independent evidence of a confluent structure and thus it  is not at all certain 
that negative results from application of the Baker-Hunter transformation are 
confirmation of the absence of confluent terms.) It is not surprising that when Baker 
and Kincaid (1981) ignore confluent effects they find that their series results violate 
hyperscaling. The strong similarity between the series and MC results suggests that 
acknowledgment of the confluent corrections may well be missing in the MC study as 
well. 

5. Conclusions 

We have demonstrated in $9 2 and 3 that the observation or otherwise of non-analytic 
confluent singularities in the d = 3, s = 5 Ising model appears to be a function of the 
critical temperature chosen. We have shown that there is strong evidence that the U, 
at which a1 # 0 is below the U, for which a1 = 0 for the BCC, FCC, sc, diamond and 
tetrahedron lattices and that choosing to use ~ ~ ( 0 )  in a MC study is tantamount to 
setting a l  = 0. We suggest that this idea be pursued further by showing the effect of 
the change of u C  on the results of MC calculations; certainly the high accuracy of the 
old v C  estimates now appears spurious! 
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Note added in proof. Recent MCRG results from the ICL Distributed Array Processor at Edinburgh (G S 
Pawley, R H Swendsen, D J Wallace and K G Wilson, to be published) give a K ,  value for the sc lattice of 
0.221 656*0.000 005, in excellent agreement with 2 of this work. 
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